Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
JACS Au ; 4(4): 1664-1672, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665662

RESUMO

The accurate and timely detection of disease biomarkers at the point-of-care is essential to ensuring effective treatment and epidemiological surveillance. Here, we report the selection and engineering of RNA-cleaving DNAzymes that respond to specific genetic markers and amplify detection signals. Because the target-specific activation of gene-specific DNAzymes (gDz) is like the trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated (Cas) machinery, we further developed a CRISPR-like assay using RNA-cleaving DNAzyme coupled with isothermal sequence and signal amplification (CLARISSA) for nucleic acid detection in clinical samples. Building on the high sequence specificity and orthogonality of gDzs, CLARISSA is highly versatile and expandable for multiplex testing. Upon integration with an isothermal recombinase polymerase amplification, CLARISSA enabled the detection of human papillomavirus (HPV) 16 in 189 cervical samples collected from cervical cancer screening participants (n = 189) with 100% sensitivity and 97.4% specificity, respectively. A multiplexed CLARISSA further allowed the simultaneous analyses of HPV16 and HPV18 in 46 cervical samples, which returned clinical sensitivity of 96.3% for HPV16 and 83.3% for HPV18, respectively. No false positives were found throughout our tests. Besides the fluorescence readout using fluorogenic reporter probes, CLARISSA is also demonstrated to be fully compatible with a visual lateral flow readout. Because of the high sensitivity, accessibility, and multiplexity, we believe CLARISSA is an ideal CRISPR-Dx alternative for clinical diagnosis in field-based and point-of-care applications.

2.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38667173

RESUMO

Since different quantities of white blood cells (WBCs) in solution possess an adaptive osmotic pressure of cells, the WBCs themselves and in solution have similar concentrations, resulting in them having similar dielectric properties. Therefore, a microwave sensor could have difficulty in sensing the quantity variation when WBCs are in solution. This paper presents a highly sensitive, linear permittivity-inspired microwave biosensor for WBCs, counting through the evaporation method. Such a measurement method is proposed to record measurements after the cell solution is dripped onto the chip and is completely evaporated naturally. The proposed biosensor consists of an air-bridged asymmetric differential inductor and a centrally located circular fork-finger capacitor fabricated on a GaAs substrate using integrated passive fabrication technology. It is optimized to feature a larger sensitive area and improved Q-factor, which increases the effective area of interaction between cells and the electromagnetic field and facilitates the detection of their changes in number. The sensing relies on the dielectric properties of the cells and the change in the dielectric constant for different concentrations, and the change in resonance properties, which mainly represents the frequency shift, corresponds to the macroscopic change in the concentration of the cells. The microwave biosensors are used to measure biological samples with concentrations ranging from 0.25 × 106 to 8 × 106 cells per mL in a temperature (26.00 ± 0.40 °C) and humidity (54.40 ± 3.90 RH%) environment. The measurement results show a high sensitivity of 25.06 Hz/cells·mL-1 with a highly linear response of r2 = 0.99748. In addition, a mathematical modeling of individual cells in suspension is performed to estimate the dielectric constant of individual cells and further explain the working mechanism of the proposed microwave biosensor.


Assuntos
Técnicas Biossensoriais , Humanos , Contagem de Leucócitos , Leucócitos/citologia , Micro-Ondas
3.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578108

RESUMO

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.

4.
Zhongguo Zhong Yao Za Zhi ; 49(3): 717-727, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621875

RESUMO

Transcriptome sequencing was employed to mine the simple sequence repeat(SSR) locus information of Saposhnikovia divaricata and design specific primers, which aimed to provide a basis for the research on the genetic diversity of S. divaricata germplasm resources. The seed purity, 1 000-seed weight, germination rate, and seed vigor were determined. MISA was used to obtain the SSR locus information from 12 606 unigene longer than 1 kb in the transcriptome database. Forty-three pairs of SSR primers designed in Primer 3 were used to analyze the polymorphism of 28 S. divaricata samples of different sources. The results showed that there were differences in the seed purity, 1 000-seed weight, germination rate, vigor, and seed length and width among S. divaricata samples of different sources. Particularly, the germination rate and seed vigor had significant differences, and HB-ZJK1, NMG-CF4, NMG-BT, NMG-HLE1, and NMG-CF2 had significantly higher 1 000-seed weight, germination rate, and seed vigor than the samples of other sources. Among the 86 233 unigene, 12 606(14.62%) unigene contained 15 958 SSR loci, with one SSR locus every 5 009 bp on average. The SSR loci were mainly single nucleotide and dinucleotide repeats, which were dominated by G/C and TC/AG, respectively. All the primers were screened by using 28 S. divaricata sample from different habitats, and the primers corresponding to the amplification products with clear bands and stable polymorphism were obtained. The clustering results of the biological characteristics and genetic diversity of the 28 S. divaricata samples were basically consistent, and the samples of the same origin(HB-AG1, HB-AG2, HB-ZJK1, and HB-ZJK2) generally gathered together and had close genetic relationship. The SSRs in S. divaricata transcriptome has high frequency, rich types, and high polymorphism, which provides candidate molecular markers for the germplasm identification, genetic map construction, and molecular-assisted breeding.


Assuntos
Apiaceae , Transcriptoma , Polimorfismo Genético , Repetições de Microssatélites/genética , Apiaceae/genética , Etiquetas de Sequências Expressas
5.
Cancer Lett ; 589: 216831, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574882

RESUMO

How tumors arise or the cause of precancerous lesions is a fundamental question in cancer biology. It is generally accepted that tumors originate from normal cells that undergo uncontrolled proliferation owing to genetic alterations. At the onset of adenoma formation, cancer driver mutations confer clonal growth advantage, enabling mutant cells to outcompete and eliminate the surrounding healthy cells. Hence, the development of precancerous lesions is not only attributed to the expansion of pre-malignant clones, but also relies on the relative fitness of mutated cells compared to the neighboring cells. Colorectal cancer (CRC) is an excellent model to investigate cancer origin as it follows a stereotypical process from mutant cell hyperplasia to adenoma formation and progression. Here, we review the evolving understanding of colonic tumor development, focusing on how cell intrinsic and extrinsic factors impact cell competition and the "clone war" between cancer-initiating cells and normal stem cells. We also discuss the promises and limitations of targeting cell competitiveness in cancer prevention and early intervention. The field of tumor initiation is currently in its infancy, elucidating the adenoma origin is crucial for designing effective prevention strategies and early treatments before cancer becomes incurable.


Assuntos
Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Lesões Pré-Cancerosas/genética , Mutação , Adenoma/genética , Adenoma/prevenção & controle , Adenoma/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/patologia
6.
ACS Appl Mater Interfaces ; 16(15): 18703-18712, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591147

RESUMO

Atomically dispersed dual-site catalysts can regulate multiple reaction processes and provide synergistic functions based on diverse molecules and their interfaces. However, how to synthesize and stabilize dual-site single-atom catalysts (DACs) is confronted with challenges. Herein, we report a facile high-temperature gas-migration strategy to synthesize Fe-Ni DACs on nitrogen-doped carbon nanosheets (FeNiSAs/NC). FeNiSAs/NC exhibits a high half-wave potential (0.88 V) for the oxygen reduction reaction (ORR) and a low overpotential of 410 mV at 10 mA cm-2 for the oxygen evolution reaction (OER). As an air electrode for Zn-air batteries (ZABs), it shows better performances in aqueous ZABs and excellent stability and flexibility in solid-state ZABs. The high specific surface area (1687.32 m2/g) of FeNiSAs/NC is conducive to electron transport. Density functional theory (DFT) reveals that the Fe sites are the active center, and Ni sites can significantly optimize the free energy of the oxygen-containing intermediate state on Fe sites, contributing to the improvement of ORR and the corresponding OER activities. This work can provide guidance for the rational design of DACs and understand the structure-activity relationship of SACs with multiple active sites for electrocatalytic energy conversion.

7.
Food Funct ; 15(7): 3479-3495, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456359

RESUMO

Objective: The optimal probiotic supplementation in pregnant women has not been thoroughly evaluated. By employing a network meta-analysis (NMA) approach, we compared the effectiveness of different probiotic supplementation strategies for pregnant women. Methods: A comprehensive search across multiple databases was performed to identify studies comparing the efficacy of probiotic supplements with each other or the control (placebo) among pregnant women. Results: This NMA, including 32 studies, systematically evaluated 6 probiotic supplement strategies: Lactobacillus, Lacticaseibacillus rhamnosus and Bifidobacterium (LRB), Lactobacillus acidophilus and Bifidobacterium (LABB), Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum (LLB), multi-combination of four probiotics (MP1), and multi-combination of six or more probiotics (MP2). Among these strategies, LLB, MP1, and MP2 all contain LABB. The NMA findings showed that MP1 was the most effective in reducing fasting blood sugar (FBS) (surface under the cumulative ranking curve [SUCRA]: 80.5%). In addition, MP2 was the most efficacious in lowering the homeostasis model assessment of insulin resistance (HOMA-IR) (SUCRA: 89.1%). LABB was ranked as the most effective in decreasing low-density lipoprotein cholesterol (LDLC) (SUCRA: 95.5%), total cholesterol (TC) (SUCRA: 95.5%), and high-sensitivity C-reactive protein (hs-CRP) (SUCRA: 94.8%). Moreover, LLB was ranked as the most effective in raising total antioxidant capacity (TAC) (SUCRA: 98.5%). Conclusion: Multi-combination of probiotic strains, especially those strategies containing LABB, may be more effective than a single probiotic strain in glycolipid metabolism, inflammation, and oxidative stress of pregnant women.


Assuntos
Gestantes , Probióticos , Humanos , Feminino , Gravidez , Glicemia/metabolismo , Lactobacillus acidophilus/metabolismo , Estresse Oxidativo , Inflamação , LDL-Colesterol/metabolismo
8.
Curr Med Sci ; 44(2): 391-398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517676

RESUMO

OBJECTIVE: The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries, utilizing computational fluid dynamics as a tool for analysis. METHODS: In line with the designated inclusion criteria, this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, China, from January 2021 to September 2022. Utilizing follow-up digital subtraction angiography (DSA) data, these cases were classified into two distinct groups: the sidewall aneurysm group and the bifurcation aneurysm group. Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model. RESULTS: No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation. However, pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel (Dvessel), inflow angle (θF), and size ratio (SR), as well as the hemodynamic parameter of inflow concentration index (ICI) (P<0.001). Notably, only the SR exhibited a significant correlation with multiple hemodynamic parameters (P<0.001), while the ICI was closely related to several morphological parameters (R>0.5, P<0.001). CONCLUSIONS: The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms. Whether it is a bifurcation or sidewall aneurysm, these disparities should be considered. The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/complicações , Aneurisma Roto/complicações , Hemodinâmica , China
9.
Pest Manag Sci ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511626

RESUMO

BACKGROUND: Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS: Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION: The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.

10.
Fitoterapia ; 173: 105814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163447

RESUMO

Four new ansamycin derivatives, named 1,19-epithio-geldanamycin A (1), 17-demethoxylherbimycin H (2), herbimycin M (3), and seco-geldanamycin B (4), together with eight known ansamycin analogues (5-12) were isolated from the solid fermentation of marine-derived actinomycete Streptomyces sp. ZYX-F-97. The structures of new compounds were elucidated by extensive spectroscopic analysis as well as nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculations. All the compounds were assayed for their antibacterial activity. Among them, compounds 4, 8, and 12 exhibited remarkable inhibition against Listeria monocytogenes with minimum inhibitory concentrations (MIC) values ranging from 8 µg·mL-1 to 64 µg·mL-1, and displayed moderate inhibition against methicillin-resistant Staphylococcus aureus (MRSA) with MIC value of 64 µg·mL-1. Compounds 4, 8, 9, and 12 showed moderate inhibition activities against both Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 32 µg·mL-1 to 128 µg·mL-1.


Assuntos
Benzoquinonas , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Lactamas Macrocíclicas , Streptomyces/química , Estrutura Molecular , Antibacterianos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana
11.
Adv Sci (Weinh) ; 11(11): e2308635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233151

RESUMO

Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.


Assuntos
Antioxidantes , Adesivos Teciduais , Nanogéis , Espécies Reativas de Oxigênio , Retina , Hidrogéis
12.
Plant Physiol ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198215

RESUMO

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, 'Yunnan' quince (Cydonia oblonga Mill.) had a dwarfing effect on 'Zaosu' pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising 'Zaosu' (scion) grafted onto 'Yunnan' quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 down-regulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.

13.
Acta Pharmacol Sin ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225395

RESUMO

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.

14.
Ther Adv Med Oncol ; 16: 17588359231222604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249338

RESUMO

Background: Substitution of methionine for threonine at codon 790 (T790M) of epidermal growth factor receptor (EGFR) represents the major mechanism of resistance to EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small-cell lung cancer. We determined the prognostic impact and association of secondary T790M mutations with the outcomes of osimertinib and chemotherapy. Methods: Patients (n = 460) progressing from first-line EGFR-TKI treatment were assessed. Tissue and/or liquid biopsies were used to determine T790M status; post-progression overall survival (OS) was analyzed. Results: Overall, 143 (31.1%) patients were T790M positive, 95 (20.7%) were T790M negative, and 222 (48.2%) had unknown T790M status. T790M status [T790M positive versus T790M negative: hazard ratio (HR) 0.48 (95% confidence interval (CI), 0.32-0.70); p < 0.001, T790M unknown versus T790M negative: HR 1.97 (95% CI, 1.47-2.64); p < 0.001] was significantly associated with post-progression OS. T790M positivity rates were similar for tissue (90/168, 53.6%) and liquid (53/90, 58.9%) biopsies (Fisher's exact test, p = 0.433). Tumor T790M-positive patients had significantly longer post-progression OS than tumor T790M-negative patients (34.1 versus 17.1 months; log-rank test, p = 8 × 10-5). Post-progression OS was similar between plasma T790M-positive and -negative patients (17.4 versus not reached; log-rank test, p = 0.600). In tumor T790M-positive patients, post-progression OS was similar after osimertinib and chemotherapy [34.1 versus 29.1 months; log-rank test, p = 0.900; HR 1.06 (95% CI, 0.44-2.57); p = 0.897]. Conclusion: T790M positivity predicts better post-progression OS than T790M negativity; tumor T790M positivity has a stronger prognostic impact than plasma T790M positivity. Osimertinib and chemotherapy provide similar OS benefits in patients with T790M-positive tumors.


Different prognostic meaning of tumor resistant gene detected from tumor or blood in patients with EGFR-mutant lung cancer The study demonstrates that patients with EGFR-mutant lung cancer who develop resistance due to a secondary T790M mutation, defined by tumor or blood T790M positivity, achieve better survival than patients without secondary T790M mutation; this association was mainly contributed by tumour T790M positivity. Oismertinib and chemotherapy led to similar survival in tumour T790M-positive patients. However, compared to osimertinib, chemotherapy was associated with longer survival in blood T790M-positive patients.

15.
Biomater Sci ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293828

RESUMO

Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.

16.
Chem Commun (Camb) ; 60(17): 2301-2319, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251733

RESUMO

The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Medicina de Precisão
17.
Clin Pharmacol Ther ; 115(3): 545-555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069481

RESUMO

Extensive investigations have been conducted regarding the potential correlation between blood type and the immune system, as well as cancer risk in the Southern Chinese population. However, the prognostic value of the blood group and its genetic determinants in the context of immune checkpoint inhibitor (ICI) treatment remains unclear. Therefore, the associations between the ABO blood group and its single nucleotide polymorphisms (SNPs) were examined in relation to ICI treatment outcomes in 370 eligible patients with cancer. This approach allowed us to derive the blood group from the SNPs responsible for blood group determination. In the discovery cohort (N = 168), antigen A carriers (blood types A and AB) exhibited an extended progression-free survival (PFS; hazard ratio (HR) = 0.58, 95% confidence interval (CI) = 0.34-0.98). The association results from the SNP-derived blood were consistent with those from the measured blood group. In the validation cohort (N = 202), Cox regression analysis revealed that the antigen A carriers (rs507666 AA+GA genotype carriers) experienced significantly extended PFS compared with the non-antigen A carriers (HR = 0.61, 95% CI = 0.40-0.93). Therefore, a longer PFS was observed in antigen A carriers (P value = 0.003, HR = 0.60, 95% CI = 0.44-0.84). Furthermore, haplotype 2 carriers (rs507666 GA and rs659104 GG) demonstrated both extended PFS and improved overall survival. Notably, the presence of antigen A was not associated with the occurrence of overall immune-related adverse events (irAEs) or organ-specific toxicity. In summary, our findings revealed that antigen A carriers did not experience a higher incidence of irAEs while exhibiting better immunotherapy efficacy.


Assuntos
Antígenos de Grupos Sanguíneos , Neoplasias Pulmonares , Neoplasias , Humanos , Intervalo Livre de Progressão , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos
18.
Biochem Pharmacol ; 220: 115938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086488

RESUMO

The stimulator of interferon genes (STING) is a crucial signaling hub in the immune system's antiviral and antimicrobial defense by detecting exogenous and endogenous DNA. The multifaceted functions of STING have been uncovered gradually during past decades, including homeostasis maintenance and overfull immunity or inflammation induction. However, the subcellular regulation of STING and mitochondria is poorly understood. The main functions of STING are outlined in this review. Moreover, we discuss how mitochondria and STING interact through multiple mechanisms, including the release of mitochondrial DNA (mtDNA), modulation of mitochondria-associated membrane (MAM) and mitochondrial dynamics, alterations in mitochondrial metabolism, regulation of reactive oxygen species (ROS) production, and mitochondria-related cell death. Finally, we discuss how STING is crucial to disease development, providing a novel perspective on its role in cellular physiology and pathology.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Homeostase , Imunidade Inata , Inflamação/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais
19.
J Cell Mol Med ; 28(2): e18066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38098223

RESUMO

The long noncoding RNA PVT1 is reported to act as an oncogene in several kinds of cancers, especially ovarian cancer (OV). Abnormal levels of N6 -methyladenosine, a dynamic and reversible modification, are associated with tumorigenesis and malignancies. Our previous study reported that PVT1 plays critical roles in regulating OV. However, it is still largely unknown how m6 A modification affects OV via PVT1. In this study, we aimed to investigate the regulation of ALKBH5 by affecting PVT1 in OV. We first found that the PVT1 RNA level was higher in OV cells than in IOSE80 cells, and conversely, the m6 A modification level of PVT1 was lower in OV cells. By searching the HPA, ALKBH5, which is responsible for PVT1 demethylation, was found to be upregulated in OV tissues versus normal ovarian tissues. ALKBH5 binds to PVT1 RNA, and knockdown of ALKBH5 decreased PVT1 RNA levels. ALKBH5 also increased FOXM1 levels by upregulating PVT1, at least partially. Knockdown of ALKBH5 suppressed OV growth, colony formation, tumour formation and invasion, which were partially reversed by overexpression of PVT1. Moreover, ALKBH5 knockdown decreased FOXM1 levels by regulating PVT1 RNA expression, subsequently increasing the sensitivity to carboplatin, 5-FU and docetaxel chemotherapy. Taken together, these results indicate that ALKBH5 directly regulates the m6 A modification and stability of PVT1. Then, modified PVT1 further regulates FOXM1 and thus affects malignant behaviours and chemosensitivity in OV cells. All these results indicate that ALKBH5 regulates the malignant behaviour of OV by regulating PVT1/FOXM1.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Neoplasias Ovarianas/patologia , Docetaxel , Carboplatina , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
20.
Public Health Genomics ; 26(1): 201-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980891

RESUMO

BACKGROUND: Published data on the association between the MTNR1B rs1387153 polymorphism and gestational diabetes mellitus (GDM) risk are controversial. OBJECTIVE: A meta-analysis was performed to assess whether the polymorphism of MTNR1B rs1387153 is associated with GDM risk. METHOD: Medline, Embase, China National Knowledge Infrastructure, and Chinese Biomedicine Databases were searched to identify eligible studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for MTNR1B rs1387153 polymorphism and GDM were appropriately derived from fixed-effects or random effects models. RESULTS: A total of 8 studies were enrolled in this meta-analysis. The pooled analyses revealed that MTNR1B rs1387153 polymorphism significantly increased the risk of GDM in all models (allele contrast (C vs. T): OR, 0.78; 95% CI, 0.73-0.83; homozygote (CC vs. TT): OR, 0.61; 95% CI, 0.53-0.69; heterozygote (CT vs. TT): OR, 0.78; 95% CI, 0.69-0.89; dominant model (CC + CT vs. TT): OR, 0.71; 95% CI, 0.63-0.80; recessive model (CC vs. CT + TT): OR, 0.73; 95% CI, 0.67-0.81). Further subgroup analyses by ethnicity of participants yielded similar positive results. CONCLUSIONS: Present meta-analysis reveals that MTNR1B rs1387153 variant may serve as genetic biomarkers of GDM.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Diabetes Gestacional/genética , Predisposição Genética para Doença , Polimorfismo Genético , Alelos , Homozigoto , Polimorfismo de Nucleotídeo Único , Receptor MT2 de Melatonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...